

Prevention & Control : the Green domination

Neonatal & Post-weaning Diarrhea (PWD) in Pigs

Occurrence: Worldwide. Age affected: Weaners. Causes: Enterotoxigenic *E.coli* strains, *:* dietary problems; stress;

Present in pig intestine Proliferation of enterotoxingenic *E.Coli (*ETEC) Sudden change in diet New environment, mixing with different farms

Other causes: Campylobacter or Salmonella, mismanagement

Wet Litter problem (Broiler / Layer)

- Breast Blister
- Dirty Eggs
- Dirty vent in broiler, pododermatitis
- Ammonia production

Natural[™] **Mechanism of Action** REMEDIES Normalizes gut peristalsis Anti-Augments inflammatory gut effects on the integrity intestinal **STODI**[®] lumen hypersecretion **Binds the** excess fluid in gut

1. Augmenting Gut Integrity

Gut Shield, Gut Immunity, Block Bacterial Adhesion & Prebiotic Effect

Augments gut integrity

STODI[®]

Pathogenesis of Infectious Diarrhoea

Stodi[®] blocks the receptors on villi by its shielding action, hence prevents adhesion & colonisation of bacteria

natura

Ref: Pharmacognosy Research | April 2011 | Vol 3 | Issue 2

Ref: Pharmacognosy Research | April 2011 | Vol 3 | Issue 2

Gut Shield Effect

Stodi Improves Gut immunity

STODI increases the surface area of GALT(µm)

EME

. .

Stodi Improves Gut immunity

SMALL INTESTINE

An increase in the surface area of the GALT is noticed in the ileum in STODI 750g/ton as compared to normal and negative control

Stod:: GALT analysis in Small intestine - Chicken Ileum Area: µm2

MECKEL'S DIVERTICULUM

NORMAL

NEGATIVE

Stodi Blocks Bacterial Adhesion

Contro	Group	Stodi Group						
4 Hour	8 Hour	4 Hour	8 Hour					
12 Hour	16 Hour	12 Hour	16 Hour					

Caco-2: Human colon adenocarcinoma cell line

Reinforced Clostridial Broth (M443)

		No. o	f C. pe	rfringe	ens adh	ered p	er field	
No of microscopic fields		Cor	ntrol			Stodi	Group	
	4hr	8hr	12hr	16hr	4hr	8hr	12hr	16hr
1	31	36	25	28	16	9	4	3
2	33	24	30	32	12	7	2	2
3	24	41	36	35	13	3	5	0
4	29	28	15	34	14	7	6	1
5	30	23	26	21	4	9	3	5
6	25	29	32	24	13	10	8	2
7	14	25	29	22	13	6	2	1
8	14	18	25	25	12	10	4	3
9	22	10	37	31	10	5	3	2
10	28	26	25	18	13	4	3	1
Average	25	26	28	27	12	7	4	2
SD	6.68	8.64	6.38	5.87	3.20	2.49	1.89	1.41
% Inhibition	0	0	0	0	52.00	73.08	85.71	92.59

Metagenomics – Gut Microflora

- Metagenomics ("Meta"- beyond oneself) is the study of the metagenome—the collective genome of microorganisms from a particular environment . Example : Gut environment
- Genomics: study of the genome of a particular organism. Example : Man or Chicken

Caecum – The Blind Gut

Undigested Nutrients reach caeca

Undergo microbial fermentation

Releases energy precursors like VFA

Better utilisation of energy from diet

. .

Choct et al 1992, Jorgensen et al 1996, Jamroz et al 2002 Sergeant MJ et al 2014, PlosOne Rinttlila T et al ,2013

O

 \mathbf{O}

Caecum – The Blind Gut

Types of energy substrates generated in Caecum

0

0

Major phyla in caecal microbiota

Firmicutes

- Fermentation of dietary compounds

- Generate VFAs

- Harvest energy from diet

Bacteriodetes

 Fermentation of carbohydrates
Utilization of

nitrogenous substances

- Biotransformation of bile acids

- Prevention of pathogen colonization Proteobacteria

- Pathogenic forms like E.coli, salmonella

> Higher F/B ratio means

Better FCR & body weight

Corrigan et al, 2015

Higher energy harvesting capacity

Costa CM et al PlosOne 2017

Many growth promoters improve F/B ratio

Salaheen et al, 2017

Corrigan et al 2015

2. Anti Inflammatory Effect

Reduce inflammation

Reference : Evid Based Complement Alternat Med. 2013;2013:789764.

Anti Inflammatory Effect

Helps in reversing gut damage and helps in re-growing intestinal villi

Diarrhoea induced using sodium chloride @ 0.75% in diet

Broiler birds (Cobb 430)

Normal Control: No excess added sodium chloride Negative control: Added sodium chloride @ 0.75% Treatment: Neg C + Stodi @ 1000g /ton of feed

Tissue harvested: Duodenum on 42nd day

3. Anti Secretory Effect

Effect of Stodi on Illeal Loop Assay

Stodi

5mg/ml

Enterotoxin

Product S

5mg/m

Enterotoxin

Effect of Stodi vs Product S on enterotoxin induced fluid accumulation

* In Rat ileum at 18 hours of treatment: Volume (mL)

• Stodi helps the gut prevent the loss of excess fluid, during diarrhoea.

Normal

Enterotoxin 10mcg

Helps in retention of fluid, hence assisting in better fluid absorption

4. Binds the Excess Water in Gut

STODI[®]

Binds the excess fluid in gut

😵 🕦 🗔 💭 🚱 💌

Stodi forms thick pasty consistency after mixing with water

5. Anti Peristaltic Effect

Stodi Improves Gut immunity

Small intestinal Transit (%)

Note: STODI @ 300g/kg rat b. wt. Report No.: E08.17R

Trial Reports

Commercial Parameters

Definite Diarrhea Domination

Trial Reports (Swine) – A01

Evaluation of STODI on Growth Rate, Feed Conversion Efficiency & Prevention and Treatment of Diarrhoea in Post Weaning Piglets

Farm :	Nguyen Thi Thuy
Location:	Chuong My, Ha Noi, Vietnam
Breed:	F1 (Yorkshire*Landrace)
Age:	Post weaning piglets – 26 days
Duration:	32 days

STUDY DESIGN (Dose Determination Study)

S.No.	Group	No. of Piglets / Group	Duration of Study				
1	G1: Control - Antibiotics used to treat Diarrhea	11					
2	G2 - Stodi @ 1 kg per ton / Stodi used upto 2.5 kg/ton to treat Diarrhea	10	32 days				
3	G3 - Stodi @ 1 kg/ton & Antibiotics used to treat Diarrhea	10					

G1 group - T. Eimerin + Biosubtil + Coli 200 mixed with feed for first 4 days for prevention of Diarrhea; used Pigcox spray/ Macavet/ Enflox whenever Diarrhea was noticed

G2 group - Piglets were fed basal diet with Stodi at 1 kg/ton and whenever the piglets showed symptoms of Diarrhea, Stodi was added upto 2.5 kg/ton in the diet of affected piglets to treat Diarrhea

G3 group - Piglets were fed basal diet with Stodi at 1 kg/ton and Injected Enflox to treat Diarrhea

Results

Incidences of Diarrhea

18

16

Body wt (kg) 10

Comparison Test

VIETNAM

Evaluation of Stodi on Growth Rate, FCR, **Prevention & Treatment of Diarrhea in Post Weaning Piglets**

Breed : F1 (Yorkshire*Landrace) Age : 26 days Piglets Duration: 32 days

Values are expressed as Mean ± SEM; n=10 - 11 *p<0.05 as compared to control based on one-way ANOVA followed by Dunnett's Multiple

16.94 16.39

After 32 Days

Piglet B. Wt (kg)

9.984

6.85 6.68 6.87

Initial (PWD)

Values are expressed as Mean ± SEM; n=10 - 11

Stodi 1 kg + upto 2.5 kg Stodi 1 kg + Farm Antibiotic

9.07 8.78

After 18 Days

Days

p<0.01 & *p<0.001 as compared to control based on one-way ANOVA followed by Dunnett's Multiple **Comparison Test**

Stodi has improved growth rate, FCR and also reduced diarrhea incidences & recurrence

Click here for full report

Click here for full report 2

Evaluation of Stodi on Growth Rate, FCR, Prevention & Treatment of Diarrhea in Post Weaning Piglets

Breed:F1 (Yorkshire*Landrace)Age:26 days PigletsDuration:32 days

	Diarrh	noea Inciden	се	
Group	No of incidence of Diarrhoea	Maximum duration of diarrhoea (No. of Days)	No of Piglets having diarrhoea	Animals Recovered without Interference
G1 – Control (& Antibiotic)	19	3	7	1
G2 – Stodi 1 kg (Stodi upto 2.5 kg)	2	1	2	2
G3 - Stodi 1 kg (& Antibiotic)	4	2	3	1

Inference

Stodi has improved growth rate, FCR and also reduced diarrhea incidences & recurrence

Click here for full report

Trial Reports (Swine) – EU01

Comparative Study of The Effect of STODI[®] on Piglets in Post-Weaning Diarrhoea

Researchers: Albert Finestra & Laura Perez,

Analytical & Statistical Report: Veterinary University of Lleida, Spain

Location: South Lleida, Spain Breed: DanBred Hybrid Time: February/March, 2019 Age: 21 days Duration: 6 weeks

Study Design

Group	Phase/Treatments	Feed	No. of piglets	
Control	Pre-starter	ZnO 3100 ppm	120	
Control	Starter	300 ppm Amoxicillin (2w)	129	
	Pre-starter	Stodi	400	
Stodi	Starter	Stodi® 2 kg/Tm + 300 ppm amox (2w)	133	

Trial Protocol

😵 📀 💌

R

-XX

Starting Date: 22 February, 2019

	1																																						
	ł																																						
Age in Days	21	22	23	24	2	5 26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48 4	9 5	0 51	52	2 53	5	4 5	5	56	57	58	59
Feed Type																																							
Feed Type					Pre	e-Sta	arte	r (2	1-3	5 D	ays))							St	art	er -	- 1 (36-	49	Day	's)				S	tar	ter	- 2	(50)-5	9 C	Day	s)	
Control GP						Zn	03	000) PP	M									1	Am	oxi	cilli	n 3	00	PN	1													
Treatment GP						S	то)I -	4 K	G							A	Amo	oxic	illi	n 30)0 F	PN	1+:	STO	DI	2 KC	G				S	ГО	DI 2	2 K	G			
Weighing 26 Days						26																																	I
Weighing 35 Days															35																								
Weighing 49 Days																												4	9										¥
Weighing 59 Days															ł														7										59

Average Body Weight (kg)

🐷 💙 🗢 💌

-XX

Group	WEIGHT 1 (26 days)	WEIGHT 2 after pre-starter phase (36 days)	WEIGHT 3 after starter 1 (51 days)	WEIGHT 4 after starter 2 (61 days)
Control	6.19	9.58	14.36	20.84
Stodi®	6.35	9.83	14.89	20.83

Results show a body weight improvement trend in the Stodi group.

Faecal Scoring

Group	Fecal Scoring
Control	1.18
Stodi®	1.00

Faecal Scoring was better in Stodi group.

🛠 🚺

Conclusions

- Production parameters in the STODI group were similar or slightly better vs. ZnO group:
 - Average body weight
 - Faecal score
- Good clinical performance with STODI:
 - No cases of diarrhoea
 - No mortality

STODI can effectively be used as ZnO replacement in the post-weaning period.

Trial Reports (Swine) – EU03

Effect of STODI[®] in a problematic farm (post-weaning and early fattening)

STUDY DESIGN

S.No.	Phase	Treatment	Number of Piglets	Duration of Study
1.	Pre- Starter	ZnO 3 kg/ton	4500	14
2.	Starter 1	ZnO 2 kg/ton + Stodi 2 kg/ton	4500	14
3.	Starter 2 (early fattening)	Stodi 3 kg/ton	4500	30

*PRRS positive farm.

* Some cases of diarrhoea 6 days after starting fattening stage. The animals were treated with Lismay (lincomycin + spectinomycin) in drinking water during 5 days. The affected animals were also treated with enrofloxacin (injectable).

Significant Reduction in Mortality & Cost of Medication vs. other previous treatments

Feedback / Conclusions

- 1. Stodi works much better than other phytogenic products tested.
- 2. Very significant improvement of checked parameters.
- 3. Complex environment farm: PRRS+.
- 4. Probably E. coli involved.

STODI helps to reduce mortality rate and medication cost by 50% compared to other natural products.

STODI Trial Report (Poultry):2

Location: Italcol, Colombia Breed: Ross 308 Time: April, 2018 Trial Period: DOC to Day 35

Evaluation of Stodi on Litter moisture%

Breed	:	ROSS 308
Age	:	DOC to Day 35
Time	:	April 2018

COLOMBIA

Litter Moisture%

Serial number	Sex	тх	Average Weight 35 days	Number of birds	Cumulative mortality 35 days	Cumulative Average Consumption 35 days	FCR 35 days	Litter moisture %
1	М	CONTROL	2,227	1,985	2.70%	3,322.369	1.492	38.6%
2	М	ТХ	2,168	2,006	3.19%	3,286.841	1.516	35.4%
3	н	CONTROL	1,929	1,995	2.21%	2,951.612	1.53	41.4%
4	Н	ТХ	1,954	1,993	2.30%	2,934.488	1.502	38.8%
M	lixed	CONTROL	2,078	3,980	2.45%	3,136.603	1.509	40.0%
M	lixed	TX	2,061	3,999	2.75%	3,111.281	1.51	37.0%
	Tota	Í	2,069.5	7,979	2,60%	3,123.911	1.51	38.6%

3% reduction in Litter moisture

Stodi reduced Litter moisture by 3 percent points

STODI Trial Report (Layers):3

Location: Italcol, Colombia Time: Dec, 2018 Trial Period: 15 days

Dirty Eggs – (Layers)

Barn No	3	4	5	6	7	Total
No. of Birds	6,300	14,680	3,290	3,260	3,680	31,210
No. Of Egg Produced	6,057	13,190	2,929	3,060	3,490	28,726
% of Production	96 %	90 %	89 %	94%	95%	92%
No. of Dirty Eggs before Stodi	1,200	2,400	510	540	690	5,340
No. of Dirty Eggs after use of Stodi	330	900	210	195	330	1,965
% of Dirty Eggs before Stodi	19.81%	18.20%	17.41%	17.65%	19.77%	18.59%
% of Dirty Eggs after use of Stodi	5.45%	6.82%	7.17%	6.37%	9.46%	6.84%
Difference	14.36%	11.37%	10.24%	11.27%	10.32%	11.75%

STODI Trial Report (Poultry):4

Location: Cargill, Taiwan Breed: Layer BV Time: May, 2018 Trial Period: 3 days

Litter Condition before

Litter Condition after 3 days

Loose dropping corrected in just 3 days

Effect of STODI[®] in a problematic farm (Broiler)

Location: Czech.R Breed: Ross 308 Time: January, 2020 Age: DOC to Day 35

STUDY DESIGN

S.No.	Groups	No of Birds	Duration	
1.	Control Group	1500	35 Days	
2.	Stodi Group	1500		

Phase	Stodi Dosage
Starter	2kg /ton
Grower	1.5kg/ton
Finisher	1kg/ton

• NE Positive farm

(-×

- Control Group Natural Anti-Coccidia
- Amprolium was added in water at recommended dosage in both the groups

Significant Reduction in Mortality & Better FCR

STODI helped to reduce mortality rate by 50% compared to other natural products in complex farm conditions

Publications on STODI[®]

Pharmacogn. Res.

ORIGINAL ARTICLE

Modulation of Chicken Cecal Microbiota by a Phytogenic Feed Additive, Stodi[®]: A Metagenomic Analysis

Saravana Kumar Marimuthu, Brindhalakshmi Balasubramanian, Ramasamy Selvam, Prashanth D'Souza

Animal Health Science, R&D Centre, Natural Remedies Private Limited, Bengaluru, Karnataka, India

Original Research Article

Anti-diarrhoeal activity of a polyherbal formulation in rats and elucidation of its cellular mechanisms

Sasikumar Murugan¹, Divya Purusothaman¹, Edwin Jothie Richard¹, Nehru Sai Suresh Chalichem¹, Bharathi Bethapudi^{1*}, Prasanna Raja Chandrasekaran¹, Chandrasekaran Chinampudur Velusami¹, Prashanth D'Souza¹, Deepak Mundkinajeddu¹

¹Research and Development centre, Natural Remedies Pvt Ltd, Plot No. 5B, Veerasandra Indl. Area, 19th K.M. Stone, Hosur Road, Bangalore 560100, Karnataka, India

JOURNAL OF ADVANCED VETERINARY AND ANIMAL RESEARCH ISSN 2311-7710 (Electronic) http://doi.org/10.5455/javar.2019.f379 A periodical of the Network for the Veterinarians of Bangladesh (BDvetNET)

December 2019 VOL 6, NO. 4, PAGES 536-543

ORIGINAL ARTICLE

Evaluation of a polyherbal formulation for the management of wet litter in broiler chickens: Implications on performance parameters, cecal moisture level, and footpad lesions

Saravanakumar Marimuthu¹, Brindhalakshmi Balasubramanian¹, Ramasamy Selvam², Prashanth D'Souza¹ ¹Animal Health Science, R&D Centre, Natural Remedies Private Limited, Veerasandra Industrial Area, Bengaluru 560 100, India ²Technocommercial, Marketing, Natural Remedies Private Limited, Veerasandra Industrial Area, Bengaluru 560 100, India

Journal of Medicinal Plants Studies 2019: 7(5): 141-145

Journal of Medicinal Plants Studies www.PlantsJournal.com

ISSN (E): 2320-3862 ISSN (P): 2394-0530 NAAS Rating: 3.53 JMPS 2019; 7(5): 141-145 © 2019 JMPS Received: 21-07-2019 Accepted: 25-08-2019

Muralidhar S Talkad Animal Health Science, R&D Small intestinal gut-associated lymphoid tissue histomorphometry analysis in broilers supplemented with Stodi®

Muralidhar S Talkad, Prashanth D'souza and Saravanakumar Marimuthu

CERTIFICATIONS OF STOD

😵 🕦 🗔 😵 💿 💌

Dosage in Poultry

Indications

To prevent/treat the non-infectious diarrhoea As supportive to treat infectious diarrhoea along with specific treatment

R

Dosage

- For healthy gut function & prevention of diarrhoea : 1 Kg per ton of feed
- For disturbed gut function & control of diarrhoea : 1.5-2 kg per ton of feed

Dosage in Swine

Indications

To prevent/treat the non-infectious diarrhoea As supportive to treat infectious diarrhoea along with specific treatment

R

Dosage

- For healthy gut function & prevention of diarrhoea : 1 to 2 Kg per ton of feed
- For disturbed gut function & control of diarrhoea : 2-3 kg per ton of feed

STODI[®] Standardised Botanical Powders from Selected Herbs • Protective shield over gut mucosa Less nutrient loss • Checks hypersecretion • Better absorption of • Reduces intestinal fluidity nutrients • Binds excess water • Normalizes peristalsis **Stops Diarrhea Secures Growth** Safe for food chain Improves intestinal villi health No residue STODI • Augments tight No toxicity junctions Safeguards Improves gut Safe for **Gut Integrity** microflora balance food chain Safe for Environment No antimicrobial resistance • Reduces ammonia production

STODI

®

Definite Diarrhea Domination

